机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。机器学习在近30多年已发展为一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析(英语:Convex analysis)、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多推论问题属于无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。机器学习已广泛应用于数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人等领域。
2024第九届教育与创新国际会议(EDUINNOV2024)涵盖主题包括但不仅限于机器学习等领域,会议组委会诚邀全球相关领域的学者、专家参加此次国际会议,就相关热点问题进行探讨、交流,共同促进科学研究的进步与发展。
2024第九届教育与创新国际会议(EDUINNOV2024)诚邀学者、专家提交他们的研究摘要、论文并参会交流。
EDUINNOV2024 的摘要与全文投稿通道已开放,欢迎您提交摘要和全文:
会议接受英文摘要投稿,摘要录用后,将以会议摘要集的形式由 Science Publishing Group (SciencePG) 出版。
论文全文被录用后,将根据主题在线出版在 Science Publishing Group (SciencePG) 的相关期刊上。合作期刊可被部分国外的检索机构检索,如WorldCat, CrossRef, Electronic Journals Library, Zeitschriftendatenbank, EZB, ResearchBib, Polish Scholarly Bibliography, Wissenschaftszentrum Berlin等。
© 2015-2024第九届教育与创新国际会议 版权所有